Bridging Traditional Development using XAF and AI: Training Sessions in Cairo

Bridging Traditional Development using XAF and AI: Training Sessions in Cairo

I recently had the privilege of conducting a training session in Cairo, Egypt, focusing on modern application development approaches. The session covered two key areas that are transforming how we build business applications: application frameworks and AI integration.

Streamlining Development with Application Frameworks

One of the highlights was demonstrating DevExpress’s eXpressApp Framework (XAF). The students were particularly impressed by how quickly we could build fully-functional Line of Business (LOB) applications. XAF’s approach eliminates much of the repetitive coding typically associated with business application development:

  • Automatic CRUD operations
  • Built-in security system
  • Consistent UI across different platforms
  • Rapid prototyping capabilities

Seamless Integration: XAF Meets Microsoft Semantic Kernel

What made this training unique was demonstrating how XAF’s capabilities extend into AI territory. We built the entire AI interface using XAF itself, showcasing how a traditional LOB framework can seamlessly incorporate advanced AI features. The audience, coming primarily from JavaScript backgrounds with Angular and React experience, was particularly impressed by how this approach simplified the integration of AI into business applications.

During the demonstrations, we explored practical implementations using Microsoft Semantic Kernel. The students were fascinated by practical demonstrations of:

  • Natural language processing for document analysis
  • Automated content generation for business documentation
  • Intelligent decision support systems
  • Context-aware data processing

Student Engagement and Outcomes

The response from the students, most of whom came from JavaScript development backgrounds, was overwhelmingly positive. As experienced frontend developers using Angular and React, they were initially skeptical about a different approach to application development. However, their enthusiasm peaked when they saw how these technologies could solve real business challenges they face daily. The combination of XAF’s rapid development capabilities and Semantic Kernel’s AI features, all integrated into a cohesive development experience, opened their eyes to new possibilities in application development.

Looking Forward

This training session in Cairo demonstrated the growing appetite for modern development approaches in the region. The intersection of efficient application frameworks and AI capabilities is proving to be a powerful combination for next-generation business applications.

And last, but not least, some pictures )))

 

 

SyncFramework for XPO: Updated for .NET 8 & 9  and DevExpress 24.2.3!

SyncFramework for XPO: Updated for .NET 8 & 9 and DevExpress 24.2.3!

SyncFramework for XPO is a specialized implementation of our delta encoding synchronization library, designed specifically for DevExpress XPO users. It enables efficient data synchronization by tracking and transmitting only the changes between data versions, optimizing both bandwidth usage and processing time.

What’s New

  • Base target framework updated to .NET 8.0
  • Added compatibility with .NET 9.0
  • Updated DevExpress XPO dependencies to 24.2.3
  • Continued support for delta encoding synchronization
  • Various performance improvements and bug fixes

Framework Compatibility

  • Primary Target: .NET 8.0
  • Additional Support: .NET 9.0

Our XPO implementation continues to serve the DevExpress community.

Key Features

  • Seamless integration with DevExpress XPO
  • Efficient delta-based synchronization
  • Support for multiple database providers
  • Cross-platform compatibility
  • Easy integration with existing XPO and XAF applications

As always, if you own a license, you can compile the source code yourself from our GitHub repository. The framework maintains its commitment to providing reliable data synchronization for XPO applications.

Happy Delta Encoding! ?

 

The New Era of Smart Editors: Creating a RAG system using XAF and the new Blazor chat component

The New Era of Smart Editors: Creating a RAG system using XAF and the new Blazor chat component

The New Era of Smart Editors: Developer Express and AI Integration

The new era of smart editors is already here. Developer Express has introduced AI functionality in many of their controls for .NET (Windows Forms, Blazor, WPF, MAUI).

This advancement will eventually come to XAF, but in the meantime, here at XARI, we are experimenting with XAF integrations to add value to our customers.

In this article, we are going to integrate the new chat component into an XAF application, and our first use case will be RAG (Retrieval-Augmented Generation). RAG is a system that combines external data sources with AI-generated responses, improving accuracy and relevance in answers by retrieving information from a document set or knowledge base and using it in conjunction with AI predictions.

To achieve this integration, we will follow the steps outlined in this tutorial:

Implement a Property Editor Based on Custom Components (Blazor)

Implementing the Property Editor

When I implement my own property editor, I usually avoid doing so for primitive types because, in most cases, my property editor will need more information than a simple primitive value. For this implementation, I want to handle a custom value in my property editor. I typically create an interface to represent the type, ensuring compatibility with both XPO and EF Core.

namespace XafSmartEditors.Razor.RagChat
{
    public interface IRagData
    {
        Stream FileContent { get; set; }
        string Prompt { get; set; }
        string FileName { get; set; }
    }
}

Non-Persistent Implementation

After defining the type for my editor, I need to create a non-persistent implementation:

namespace XafSmartEditors.Razor.RagChat
{
    [DomainComponent]
    public class IRagDataImp : IRagData, IXafEntityObject, INotifyPropertyChanged
    {
        private void OnPropertyChanged([CallerMemberName] string propertyName = null)
        {
            PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
        }

        public IRagDataImp()
        {
            Oid = Guid.NewGuid();
        }

        [DevExpress.ExpressApp.Data.Key]
        [Browsable(false)]  
        public Guid Oid { get; set; }

        private string prompt;
        private string fileName;
        private Stream fileContent;

        public Stream FileContent
        {
            get => fileContent;
            set
            {
                if (fileContent == value) return;
                fileContent = value;
                OnPropertyChanged();
            }
        }

        public string FileName
        {
            get => fileName;
            set
            {
                if (fileName == value) return;
                fileName = value;
                OnPropertyChanged();
            }
        }
        
        public string Prompt
        {
            get => prompt;
            set
            {
                if (prompt == value) return;
                prompt = value;
                OnPropertyChanged();
            }
        }

        // IXafEntityObject members
        void IXafEntityObject.OnCreated() { }
        void IXafEntityObject.OnLoaded() { }
        void IXafEntityObject.OnSaving() { }

        public event PropertyChangedEventHandler PropertyChanged;
    }
}

Creating the Blazor Chat Component

Now, it’s time to create our Blazor component and add the new DevExpress chat component for Blazor:

<DxAIChat CssClass="my-chat" Initialized="Initialized" 
          RenderMode="AnswerRenderMode.Markdown" 
          UseStreaming="true"
          SizeMode="SizeMode.Medium">
    <EmptyMessageAreaTemplate>
        <div class="my-chat-ui-description">
            <span style="font-weight: bold; color: #008000;">Rag Chat</span> Assistant is ready to answer your questions.
        </div>
    </EmptyMessageAreaTemplate>
    <MessageContentTemplate>
        <div class="my-chat-content">
            @ToHtml(context.Content)
        </div>
    </MessageContentTemplate>
</DxAIChat>

@code {
    IRagData _value;
    [Parameter]
    public IRagData Value
    {
        get => _value;
        set => _value = value;
    }
    
    async Task Initialized(IAIChat chat)
    {
        await chat.UseAssistantAsync(new OpenAIAssistantOptions(
            this.Value.FileName,
            this.Value.FileContent,
            this.Value.Prompt
        ));
    }

    MarkupString ToHtml(string text)
    {
        return (MarkupString)Markdown.ToHtml(text);
    }
}

The main takeaway from this component is that it receives a parameter named Value of type IRagData, and we use this value to initialize the IAIChat service in the Initialized method.

Creating the Component Model

With the interface and domain component in place, we can now create the component model to communicate the value of our domain object with the Blazor component:

namespace XafSmartEditors.Razor.RagChat
{
    public class RagDataComponentModel : ComponentModelBase
    {
        public IRagData Value
        {
            get => GetPropertyValue<IRagData>();
            set => SetPropertyValue(value);
        }

        public EventCallback<IRagData> ValueChanged
        {
            get => GetPropertyValue<EventCallback<IRagData>>();
            set => SetPropertyValue(value);
        }

        public override Type ComponentType => typeof(RagChat);
    }
}

Creating the Property Editor

Finally, let’s create the property editor class that serves as a bridge between XAF and the new component:

namespace XafSmartEditors.Blazor.Server.Editors
{
    [PropertyEditor(typeof(IRagData), true)]
    public class IRagDataPropertyEditor : BlazorPropertyEditorBase, IComplexViewItem
    {
        private IObjectSpace _objectSpace;
        private XafApplication _application;

        public IRagDataPropertyEditor(Type objectType, IModelMemberViewItem model) : base(objectType, model) { }

        public void Setup(IObjectSpace objectSpace, XafApplication application)
        {
            _objectSpace = objectSpace;
            _application = application;
        }

        public override RagDataComponentModel ComponentModel => (RagDataComponentModel)base.ComponentModel;

        protected override IComponentModel CreateComponentModel()
        {
            var model = new RagDataComponentModel();

            model.ValueChanged = EventCallback.Factory.Create<IRagData>(this, value =>
            {
                model.Value = value;
                OnControlValueChanged();
                WriteValue();
            });

            return model;
        }

        protected override void ReadValueCore()
        {
            base.ReadValueCore();
            ComponentModel.Value = (IRagData)PropertyValue;
        }

        protected override object GetControlValueCore() => ComponentModel.Value;

        protected override void ApplyReadOnly()
        {
            base.ApplyReadOnly();
            ComponentModel?.SetAttribute("readonly", !AllowEdit);
        }
    }
}

Bringing It All Together

Now, let’s create a domain object that can feed the content of a file to our chat component:

namespace XafSmartEditors.Module.BusinessObjects
{
    [DefaultClassOptions]
    public class PdfFile : BaseObject
    {
        public PdfFile(Session session) : base(session) { }

        string prompt;
        string name;
        FileData file;

        public FileData File
        {
            get => file;
            set => SetPropertyValue(nameof(File), ref file, value);
        }

        public string Name
        {
            get => name;
            set => SetPropertyValue(nameof(Name), ref name, value);
        }

        public string Prompt
        {
            get => prompt;
            set => SetPropertyValue(nameof(Prompt), ref prompt, value);
        }
    }
}

Creating the Controller

We are almost done! Now, we need to create a controller with a popup action:

namespace XafSmartEditors.Module.Controllers
{
    public class OpenChatController : ViewController
    {
        Popup

WindowShowAction Chat;

        public OpenChatController()
        {
            this.TargetObjectType = typeof(PdfFile);
            Chat = new PopupWindowShowAction(this, "ChatAction", "View");
            Chat.Caption = "Chat";
            Chat.ImageName = "artificial_intelligence";
            Chat.Execute += Chat_Execute;
            Chat.CustomizePopupWindowParams += Chat_CustomizePopupWindowParams;
        }

        private void Chat_Execute(object sender, PopupWindowShowActionExecuteEventArgs e) { }

        private void Chat_CustomizePopupWindowParams(object sender, CustomizePopupWindowParamsEventArgs e)
        {
            PdfFile pdfFile = this.View.CurrentObject as PdfFile;
            var os = this.Application.CreateObjectSpace(typeof(ChatView));
            var chatView = os.CreateObject<ChatView>();

            MemoryStream memoryStream = new MemoryStream();
            pdfFile.File.SaveToStream(memoryStream);
            memoryStream.Seek(0, SeekOrigin.Begin);

            chatView.RagData = os.CreateObject<IRagDataImp>();
            chatView.RagData.FileName = pdfFile.File.FileName;
            chatView.RagData.Prompt = !string.IsNullOrEmpty(pdfFile.Prompt) ? pdfFile.Prompt : DefaultPrompt;
            chatView.RagData.FileContent = memoryStream;

            DetailView detailView = this.Application.CreateDetailView(os, chatView);
            detailView.Caption = $"Chat with Document | {pdfFile.File.FileName.Trim()}";

            e.View = detailView;
        }
    }
}

Conclusion

That’s everything we need to create a RAG system using XAF and the new DevExpress Chat component. You can find the complete source code here: GitHub Repository.

If you want to meet and discuss AI, XAF, and .NET, feel free to schedule a meeting: Schedule a Meeting.

Until next time, XAF out!